








2026-01-09 06:08:13
當(dāng)今世界面臨著嚴(yán)峻的環(huán)境與能源挑戰(zhàn)。傳統(tǒng)能源如煤、石油的不斷消耗以及環(huán)境的日益惡化嚴(yán)重影響了人類的日常生活以及社會(huì)的正常發(fā)展。因而開發(fā)更為高效與環(huán)境友好的能源設(shè)備越來越得到人們的強(qiáng)烈關(guān)注。為**的初代鋰離子二次電池以其在能量密度與操作電壓上明顯優(yōu)于傳統(tǒng)鉛酸與鎳鎘電池的優(yōu)勢(shì),迅速應(yīng)用于便攜電子設(shè)備電池市場。其后,隨著具有環(huán)境友好、成本低廉、循環(huán)性能穩(wěn)定等諸多優(yōu)勢(shì)的以磷酸鐵鋰為**的正極材料的報(bào)道[6,7],鋰離子二次電池的應(yīng)用也擴(kuò)展到混合動(dòng)力汽車與純電動(dòng)汽車領(lǐng)域。然而目前鋰離子電池電極材料還存在著諸多問題,如較低的電子電導(dǎo)率與鋰離子遷移效率、嵌脫鋰過程中巨大的體積變化、電極材料與電解液的副反應(yīng)造成的容量損失以及活性物質(zhì)不可逆的結(jié)構(gòu)變化制約材料的循環(huán)穩(wěn)定性等。另外,由于目前常用的鋰離子電池正極材料固有的理論容量限制,實(shí)際應(yīng)用的鋰離子電池的比能量密度很難突破250Wh/kg[8],因而難以滿足其在高比能量電池領(lǐng)域的長遠(yuǎn)發(fā)展。在這種背景下,鋰硫電池作為一種新的電化學(xué)儲(chǔ)能體系,以其超高的理論能量密度(2600Wh/kg)以及單質(zhì)硫儲(chǔ)量豐富、環(huán)境友好的特點(diǎn),成為高比能二次電池的研究熱點(diǎn)??蓱?yīng)用于電機(jī)、變壓器、電力電纜、電氣柜、新能源汽車、風(fēng)力發(fā)電、電觸頭材料等領(lǐng)域。官能化氧化石墨烯粉體

涂膜法是一種操作簡單、效率相對(duì)較高的制備方法,常見的涂膜法可分為噴涂??法和旋涂法兩種。3〇^0山6[46]等人將00懸浮液噴涂在預(yù)熱后的51/3丨02基材上,待??溶劑完全蒸發(fā)后得到石墨烯薄膜。在噴涂過程中,可通過調(diào)節(jié)噴霧持續(xù)時(shí)間和分散??液濃度來精確地控制GO片的厚度及密度,進(jìn)一步還原后所得到的石墨烯薄膜可作??為P型半導(dǎo)體,并表現(xiàn)出良好的場效應(yīng)響應(yīng)。除了普遍使用的噴涂法之外,Lian[47]??等人將電噴霧沉積法與卷對(duì)卷工藝相結(jié)合,經(jīng)過機(jī)械壓實(shí)和2200°C高溫處理后得到??***石墨烯薄膜,熱導(dǎo)率比較高可達(dá)1434?W?nr1?K-1,并且可實(shí)現(xiàn)大面積生產(chǎn)。Bao[4]??等人將GO分散液沉積在強(qiáng)氧化劑處理過的玻璃基材表面,并使基材分別以500??rpm、800?rpm和1600?rpm的速度旋轉(zhuǎn)30?s,官能化氧化石墨烯粉體氧化石墨烯粉體只有第六元素具備規(guī)?;a(chǎn)能。

近年來,石墨烯薄膜因其高電導(dǎo)率和輕巧柔鈿的特性而受到越來越多的關(guān)注。石高全教授課題組[51]通過蒸發(fā)誘導(dǎo)自組裝法對(duì)引入少量纖維素納米晶體(CNC)的??氧化石墨分散液進(jìn)行干燥處理,然后使氫碘酸對(duì)得到的薄膜化學(xué)還原,其中,CNC能夠誘導(dǎo)石墨烯片上形成皺紋,使其機(jī)械性能得到了進(jìn)一步增強(qiáng)。測(cè)試結(jié)果表明,這種薄膜具有拉伸強(qiáng)度比較高可達(dá)800?MPa,且斷裂伸長率、初性和電導(dǎo)率分別達(dá)到6.22±0.19%、15.6412.20?MJ?m_3、1105±17?S?cm-1,遠(yuǎn)遠(yuǎn)髙于其他文獻(xiàn)中報(bào)道的性??能。Cher^M等人通過在單層石墨烯上沉積金膜制備了?GO/Au復(fù)合電極,在沉積金膜的厚度為7?nm時(shí),復(fù)合膜在520?nm波長處具有24.6?Q?m_2的**電阻和74.6%的高透射率。為了更直觀地分析其電學(xué)性能,Chen等人組裝了基于GO/Au復(fù)合電極的超級(jí)電容器,測(cè)試發(fā)現(xiàn),與基于單層石墨烯的超級(jí)電容器相比,其電容提高了17倍,并且表現(xiàn)出良好的機(jī)械穩(wěn)定性,證明了石墨烯復(fù)合膜在柔性電子領(lǐng)域具有巨大的應(yīng)潛力。
除了可以將太陽能轉(zhuǎn)換為熱能存儲(chǔ)之外,石墨烯相變材料也可以將電能轉(zhuǎn)換為??熱能存儲(chǔ)。Wang[65]等人通過冰模板法制備了石墨烯納米片(GNP)氣凝膠,然后與??石蠟復(fù)合得到相變復(fù)合材料,具有高導(dǎo)熱性、較好的形狀穩(wěn)定性和熱穩(wěn)定性,當(dāng)??GNP含量為4.1?wt%時(shí)熱導(dǎo)率可達(dá)到1.42?W?m-1?1C1。此外,當(dāng)電壓為5?V時(shí),流經(jīng)??樣品的電流約為1.18?A,此時(shí)溫度迅速升高,證實(shí)了其出色的電熱轉(zhuǎn)換能力。Li[66】??等人將氣相擴(kuò)散法和溶膠-凝膠法相結(jié)合,通過超臨界C02干燥和熱退火過程,制備??了具有各向異性網(wǎng)絡(luò)的三維石墨烯氣凝膠,導(dǎo)熱率和導(dǎo)電率分別高達(dá)1.71?士0.2?W?nr1??1C1和341.3?S?nr1。其相變復(fù)合材料在施加1?3?V的電壓時(shí),電-熱轉(zhuǎn)換效率比較高可以??達(dá)到85%。這項(xiàng)工作能夠?yàn)殚_發(fā)智能的電-熱轉(zhuǎn)換及存儲(chǔ)系統(tǒng)提供理論基礎(chǔ),并證明??了石墨烯相變復(fù)合材料在電子設(shè)備、太陽能存儲(chǔ)利用、熱管理系統(tǒng)等領(lǐng)域具備的潛??力。??石墨烯的導(dǎo)熱性能優(yōu)異,易分散,易加工。

光-熱能量轉(zhuǎn)換是石墨烯相變復(fù)合材料目前應(yīng)用*****的一個(gè)領(lǐng)域。楊鳴波教授??團(tuán)隊(duì)[63]通過化學(xué)氣相沉積(CVD)制備出了具有互連網(wǎng)絡(luò)的石墨烯泡沫(GF),用??于制備復(fù)合相變材料的三維骨架。研宄發(fā)現(xiàn),這種相變復(fù)合材料的熱導(dǎo)率比純相變??材料高744%,且具有很高的光-熱轉(zhuǎn)換效率,表明其在太陽能利用和存儲(chǔ)中的巨大??潛力。**近,他們團(tuán)隊(duì)[64]通過冷凍鑄造法制備了三維石墨烯網(wǎng)絡(luò),與聚乙二醇??(PEG)復(fù)合后得到具有出色的形狀穩(wěn)定性以及高儲(chǔ)能密度的石墨烯相變復(fù)合材??料。在100?mW?cnr2的模擬太陽光下照射20分鐘,相變復(fù)合材料的溫度迅速升高,??比較高可達(dá)到約70°C,而純PEG的溫度*為55.4°C,無法完成相變過程。關(guān)閉模擬光??源后,相變復(fù)合材料的溫度急劇下降,當(dāng)溫度到達(dá)結(jié)晶點(diǎn)附近時(shí),將出現(xiàn)另一個(gè)平??臺(tái),**著熱能的釋放過程。實(shí)驗(yàn)結(jié)果表明,與純PEG相比,石墨烯相變復(fù)合材料??在光-熱能量轉(zhuǎn)換方面表現(xiàn)出更優(yōu)異的性能,有著更好的應(yīng)用前景。??常州第六元素氧化石墨(烯)產(chǎn)能達(dá)到1400噸/年,石墨烯粉產(chǎn)能達(dá)到100噸/年。官能化氧化石墨烯粉體
玻纖增強(qiáng)復(fù)合料材質(zhì)地輕、流動(dòng)性好,良好的加工性能。官能化氧化石墨烯粉體
氧化石墨烯成膜過程中因氧化石墨烯片層以交錯(cuò)的方式堆疊在一起,會(huì)形成納米通道,因而可作為分子篩。Li等[6和Joshi等|_6]研究發(fā)現(xiàn)氧化石墨烯膜具有一定的選擇滲透性,能使水化離子半徑小的離子及直徑小于納米通道孔徑的氣體分子通過,從而實(shí)現(xiàn)分子之間的分離。另外,氧化石墨烯膜還能吸附有機(jī)染料,可應(yīng)用于污水處理、鹽水淡化和油水分離等領(lǐng)域_6。Wang等l_7o]研究發(fā)現(xiàn)多孔納米聚丙烯腈纖維支撐基底的氧化石墨烯膜能完全過濾水中的剛果紅,且對(duì)無機(jī)鹽NaSO的阻滯率達(dá)56.7。Chen等_7將氧化石墨烯和碳納米管復(fù)合制備了還原氧化石墨烯一CNT復(fù)合濾膜,發(fā)現(xiàn)復(fù)合濾膜滲透率高達(dá)20~3OL·m·h·bar~,且對(duì)水中甲基橙阻滯率達(dá)97.3,對(duì)其他物質(zhì)的阻滯率達(dá)99%。官能化氧化石墨烯粉體